3.248 \(\int \frac {x (a+b \sin ^{-1}(c x))^2}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=208 \[ \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 i b \sqrt {1-c^2 x^2} \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}} \]

[Out]

(a+b*arcsin(c*x))^2/c^2/d/(-c^2*d*x^2+d)^(1/2)+4*I*b*(a+b*arcsin(c*x))*arctan(I*c*x+(-c^2*x^2+1)^(1/2))*(-c^2*
x^2+1)^(1/2)/c^2/d/(-c^2*d*x^2+d)^(1/2)-2*I*b^2*polylog(2,-I*(I*c*x+(-c^2*x^2+1)^(1/2)))*(-c^2*x^2+1)^(1/2)/c^
2/d/(-c^2*d*x^2+d)^(1/2)+2*I*b^2*polylog(2,I*(I*c*x+(-c^2*x^2+1)^(1/2)))*(-c^2*x^2+1)^(1/2)/c^2/d/(-c^2*d*x^2+
d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 208, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {4677, 4657, 4181, 2279, 2391} \[ -\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,-i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 i b \sqrt {1-c^2 x^2} \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a + b*ArcSin[c*x])^2/(c^2*d*Sqrt[d - c^2*d*x^2]) + ((4*I)*b*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*ArcTan[E^(I
*ArcSin[c*x])])/(c^2*d*Sqrt[d - c^2*d*x^2]) - ((2*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, (-I)*E^(I*ArcSin[c*x])])
/(c^2*d*Sqrt[d - c^2*d*x^2]) + ((2*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, I*E^(I*ArcSin[c*x])])/(c^2*d*Sqrt[d - c
^2*d*x^2])

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4181

Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*ArcTanh[E
^(I*k*Pi)*E^(I*(e + f*x))])/f, x] + (-Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))],
 x], x] + Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e,
f}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 4657

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/(c*d), Subst[Int[(a +
b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \sin ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=\frac {\left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{1-c^2 x^2} \, dx}{c d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \sec (x) \, dx,x,\sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 i b \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+i e^{i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 i b \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 i b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (2 i b^2 \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \sin ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 i b \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \tan ^{-1}\left (e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.58, size = 276, normalized size = 1.33 \[ \frac {a^2+2 a b \sqrt {1-c^2 x^2} \log \left (\cos \left (\frac {1}{2} \sin ^{-1}(c x)\right )-\sin \left (\frac {1}{2} \sin ^{-1}(c x)\right )\right )-2 a b \sqrt {1-c^2 x^2} \log \left (\sin \left (\frac {1}{2} \sin ^{-1}(c x)\right )+\cos \left (\frac {1}{2} \sin ^{-1}(c x)\right )\right )+2 a b \sin ^{-1}(c x)-2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (-i e^{i \sin ^{-1}(c x)}\right )+2 i b^2 \sqrt {1-c^2 x^2} \text {Li}_2\left (i e^{i \sin ^{-1}(c x)}\right )-2 b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x) \log \left (1-i e^{i \sin ^{-1}(c x)}\right )+2 b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x) \log \left (1+i e^{i \sin ^{-1}(c x)}\right )+b^2 \sin ^{-1}(c x)^2}{c^2 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a^2 + 2*a*b*ArcSin[c*x] + b^2*ArcSin[c*x]^2 - 2*b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x]*Log[1 - I*E^(I*ArcSin[c*x])
] + 2*b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x]*Log[1 + I*E^(I*ArcSin[c*x])] + 2*a*b*Sqrt[1 - c^2*x^2]*Log[Cos[ArcSin[
c*x]/2] - Sin[ArcSin[c*x]/2]] - 2*a*b*Sqrt[1 - c^2*x^2]*Log[Cos[ArcSin[c*x]/2] + Sin[ArcSin[c*x]/2]] - (2*I)*b
^2*Sqrt[1 - c^2*x^2]*PolyLog[2, (-I)*E^(I*ArcSin[c*x])] + (2*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, I*E^(I*ArcSin
[c*x])])/(c^2*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b^{2} x \arcsin \left (c x\right )^{2} + 2 \, a b x \arcsin \left (c x\right ) + a^{2} x\right )}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b^2*x*arcsin(c*x)^2 + 2*a*b*x*arcsin(c*x) + a^2*x)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2
 + d^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [ab
s(t_nostep^4-1)]index.cc index_m i_lex_is_greater Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.20, size = 540, normalized size = 2.60 \[ \frac {a^{2}}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2}}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x)

[Out]

a^2/c^2/d/(-c^2*d*x^2+d)^(1/2)-b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)^2+2*I*b^2*(-c^2*x^2+
1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*dilog(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))-2*I*b^2*(-c^2*x^2+1)
^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*dilog(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))-2*b^2*(-c^2*x^2+1)^(1/
2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)*ln(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))+2*b^2*(-c^2*x^2+1
)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))-2*a*b*(-d*(c
^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arcsin(c*x)-2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*
x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)+2*a*b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*ln(I
*c*x+(-c^2*x^2+1)^(1/2)+I)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \sqrt {d} \int \frac {{\left (b^{2} x \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} + 2 \, a b x \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )\right )} \sqrt {c x + 1} \sqrt {-c x + 1}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}\,{d x} + \frac {a^{2}}{\sqrt {-c^{2} d x^{2} + d} c^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

sqrt(d)*integrate((b^2*x*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2 + 2*a*b*x*arctan2(c*x, sqrt(c*x + 1)*sqr
t(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-c*x + 1)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x) + a^2/(sqrt(-c^2*d*x^2 + d)
*c^2*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2),x)

[Out]

int((x*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x*(a + b*asin(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________